3.236 \(\int \frac{\sinh ^4(c+d x)}{a-b \sinh ^4(c+d x)} \, dx\)

Optimal. Leaf size=127 \[ \frac{\sqrt [4]{a} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 b d \sqrt{\sqrt{a}-\sqrt{b}}}+\frac{\sqrt [4]{a} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 b d \sqrt{\sqrt{a}+\sqrt{b}}}-\frac{x}{b} \]

[Out]

-(x/b) + (a^(1/4)*ArcTanh[(Sqrt[Sqrt[a] - Sqrt[b]]*Tanh[c + d*x])/a^(1/4)])/(2*Sqrt[Sqrt[a] - Sqrt[b]]*b*d) +
(a^(1/4)*ArcTanh[(Sqrt[Sqrt[a] + Sqrt[b]]*Tanh[c + d*x])/a^(1/4)])/(2*Sqrt[Sqrt[a] + Sqrt[b]]*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.206337, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {3217, 1287, 207, 1166, 208} \[ \frac{\sqrt [4]{a} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 b d \sqrt{\sqrt{a}-\sqrt{b}}}+\frac{\sqrt [4]{a} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 b d \sqrt{\sqrt{a}+\sqrt{b}}}-\frac{x}{b} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[c + d*x]^4/(a - b*Sinh[c + d*x]^4),x]

[Out]

-(x/b) + (a^(1/4)*ArcTanh[(Sqrt[Sqrt[a] - Sqrt[b]]*Tanh[c + d*x])/a^(1/4)])/(2*Sqrt[Sqrt[a] - Sqrt[b]]*b*d) +
(a^(1/4)*ArcTanh[(Sqrt[Sqrt[a] + Sqrt[b]]*Tanh[c + d*x])/a^(1/4)])/(2*Sqrt[Sqrt[a] + Sqrt[b]]*b*d)

Rule 3217

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^p)/(1 + ff^2
*x^2)^(m/2 + 2*p + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rule 1287

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[((f*x)^m*(d + e*x^2)^q)/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sinh ^4(c+d x)}{a-b \sinh ^4(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (1-x^2\right ) \left (a-2 a x^2+(a-b) x^4\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{1}{b \left (-1+x^2\right )}+\frac{a \left (1-x^2\right )}{b \left (a-2 a x^2+(a-b) x^4\right )}\right ) \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{-1+x^2} \, dx,x,\tanh (c+d x)\right )}{b d}+\frac{a \operatorname{Subst}\left (\int \frac{1-x^2}{a-2 a x^2+(a-b) x^4} \, dx,x,\tanh (c+d x)\right )}{b d}\\ &=-\frac{x}{b}-\frac{\left (\sqrt{a} \left (\sqrt{a}+\sqrt{b}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-a-\sqrt{a} \sqrt{b}+(a-b) x^2} \, dx,x,\tanh (c+d x)\right )}{2 b d}-\frac{\left (a \left (1-\frac{\sqrt{b}}{\sqrt{a}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-a+\sqrt{a} \sqrt{b}+(a-b) x^2} \, dx,x,\tanh (c+d x)\right )}{2 b d}\\ &=-\frac{x}{b}+\frac{\sqrt [4]{a} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 \sqrt{\sqrt{a}-\sqrt{b}} b d}+\frac{\sqrt [4]{a} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 \sqrt{\sqrt{a}+\sqrt{b}} b d}\\ \end{align*}

Mathematica [A]  time = 0.449812, size = 143, normalized size = 1.13 \[ \frac{\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\left (\sqrt{a}+\sqrt{b}\right ) \tanh (c+d x)}{\sqrt{\sqrt{a} \sqrt{b}+a}}\right )}{\sqrt{\sqrt{a} \sqrt{b}+a}}-\frac{\sqrt{a} \tan ^{-1}\left (\frac{\left (\sqrt{a}-\sqrt{b}\right ) \tanh (c+d x)}{\sqrt{\sqrt{a} \sqrt{b}-a}}\right )}{\sqrt{\sqrt{a} \sqrt{b}-a}}-2 (c+d x)}{2 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[c + d*x]^4/(a - b*Sinh[c + d*x]^4),x]

[Out]

(-2*(c + d*x) - (Sqrt[a]*ArcTan[((Sqrt[a] - Sqrt[b])*Tanh[c + d*x])/Sqrt[-a + Sqrt[a]*Sqrt[b]]])/Sqrt[-a + Sqr
t[a]*Sqrt[b]] + (Sqrt[a]*ArcTanh[((Sqrt[a] + Sqrt[b])*Tanh[c + d*x])/Sqrt[a + Sqrt[a]*Sqrt[b]]])/Sqrt[a + Sqrt
[a]*Sqrt[b]])/(2*b*d)

________________________________________________________________________________________

Maple [C]  time = 0.033, size = 144, normalized size = 1.1 \begin{align*} -{\frac{1}{bd}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{a}{4\,bd}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{8}-4\,a{{\it \_Z}}^{6}+ \left ( 6\,a-16\,b \right ){{\it \_Z}}^{4}-4\,a{{\it \_Z}}^{2}+a \right ) }{\frac{{{\it \_R}}^{6}-3\,{{\it \_R}}^{4}+3\,{{\it \_R}}^{2}-1}{{{\it \_R}}^{7}a-3\,{{\it \_R}}^{5}a+3\,{{\it \_R}}^{3}a-8\,{{\it \_R}}^{3}b-{\it \_R}\,a}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }}+{\frac{1}{bd}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(d*x+c)^4/(a-b*sinh(d*x+c)^4),x)

[Out]

-1/d/b*ln(tanh(1/2*d*x+1/2*c)+1)-1/4/d*a/b*sum((_R^6-3*_R^4+3*_R^2-1)/(_R^7*a-3*_R^5*a+3*_R^3*a-8*_R^3*b-_R*a)
*ln(tanh(1/2*d*x+1/2*c)-_R),_R=RootOf(a*_Z^8-4*a*_Z^6+(6*a-16*b)*_Z^4-4*a*_Z^2+a))+1/d/b*ln(tanh(1/2*d*x+1/2*c
)-1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -16 \, a \int \frac{e^{\left (4 \, d x + 4 \, c\right )}}{b^{2} e^{\left (8 \, d x + 8 \, c\right )} - 4 \, b^{2} e^{\left (6 \, d x + 6 \, c\right )} - 4 \, b^{2} e^{\left (2 \, d x + 2 \, c\right )} + b^{2} - 2 \,{\left (8 \, a b e^{\left (4 \, c\right )} - 3 \, b^{2} e^{\left (4 \, c\right )}\right )} e^{\left (4 \, d x\right )}}\,{d x} - \frac{x}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^4/(a-b*sinh(d*x+c)^4),x, algorithm="maxima")

[Out]

-16*a*integrate(e^(4*d*x + 4*c)/(b^2*e^(8*d*x + 8*c) - 4*b^2*e^(6*d*x + 6*c) - 4*b^2*e^(2*d*x + 2*c) + b^2 - 2
*(8*a*b*e^(4*c) - 3*b^2*e^(4*c))*e^(4*d*x)), x) - x/b

________________________________________________________________________________________

Fricas [B]  time = 2.16358, size = 2128, normalized size = 16.76 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^4/(a-b*sinh(d*x+c)^4),x, algorithm="fricas")

[Out]

-1/4*(b*sqrt(((a*b^2 - b^3)*d^2*sqrt(a/((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) + a)/((a*b^2 - b^3)*d^2))*log(2*(a*b -
 b^2)*d^2*sqrt(a/((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) + cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x
 + c)^2 + 2*((a*b^2 - b^3)*d^3*sqrt(a/((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) - b*d)*sqrt(((a*b^2 - b^3)*d^2*sqrt(a/(
(a^2*b^3 - 2*a*b^4 + b^5)*d^4)) + a)/((a*b^2 - b^3)*d^2)) - 1) - b*sqrt(((a*b^2 - b^3)*d^2*sqrt(a/((a^2*b^3 -
2*a*b^4 + b^5)*d^4)) + a)/((a*b^2 - b^3)*d^2))*log(2*(a*b - b^2)*d^2*sqrt(a/((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) +
 cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 2*((a*b^2 - b^3)*d^3*sqrt(a/((a^2*b^3 - 2
*a*b^4 + b^5)*d^4)) - b*d)*sqrt(((a*b^2 - b^3)*d^2*sqrt(a/((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) + a)/((a*b^2 - b^3)
*d^2)) - 1) - b*sqrt(-((a*b^2 - b^3)*d^2*sqrt(a/((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) - a)/((a*b^2 - b^3)*d^2))*log
(-2*(a*b - b^2)*d^2*sqrt(a/((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) + cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c)
+ sinh(d*x + c)^2 + 2*((a*b^2 - b^3)*d^3*sqrt(a/((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) + b*d)*sqrt(-((a*b^2 - b^3)*d
^2*sqrt(a/((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) - a)/((a*b^2 - b^3)*d^2)) - 1) + b*sqrt(-((a*b^2 - b^3)*d^2*sqrt(a/
((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) - a)/((a*b^2 - b^3)*d^2))*log(-2*(a*b - b^2)*d^2*sqrt(a/((a^2*b^3 - 2*a*b^4 +
 b^5)*d^4)) + cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 2*((a*b^2 - b^3)*d^3*sqrt(a/
((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) + b*d)*sqrt(-((a*b^2 - b^3)*d^2*sqrt(a/((a^2*b^3 - 2*a*b^4 + b^5)*d^4)) - a)/
((a*b^2 - b^3)*d^2)) - 1) + 4*x)/b

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)**4/(a-b*sinh(d*x+c)**4),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.32317, size = 18, normalized size = 0.14 \begin{align*} -\frac{d x + c}{b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^4/(a-b*sinh(d*x+c)^4),x, algorithm="giac")

[Out]

-(d*x + c)/(b*d)